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Pressure-wave propagation through a separated gas-liquid layer at  rest in a duct 
of constant rectangular cross-section and infinite length is considered. Such a 
system is dispersive, possessing an infinite number of modes which depend on 
the ratios of the densities, thicknesses and sound speeds of the two phases. The 
transitional variation of an infinitesimal disturbance initially having a step profile 
is investigated analytically and numerically. In addition, it is shown that a weak 
but finite disturbance is described asymptotically by the solution of the 
Korteweg-de Vries equation. 

1. Introduction 
In recent years considerable attention has been paid to fluid systems in which 

gaseous and liquid phases coexist. The dynamical properties of such fluid 
systems differ in general, depending on whether each phase is discrete or con- 
tinuous, examples of the different possibilities being bubble-liquid, droplet-gas, 
separated stratified and plug systems. On the other hand, however, all these 
systems have the common feature that they admit dispersive propagating pres- 
sure waves. Thus they pose an interesting problem in connexion with wave 
motion or choking of the flow. 

For bubble-liquid systems, in which the liquid phase is continuous but the 
gaseous phase is discrete, we can refer to van Wijngaarden’s (1968, 1972) model; 
the analysisis based on this model. Droplet-gas systems, in which the liquid phase 
is discrete but the gaseous phaseis continuous, have beeninvestigatedextensively, 
as an example of a dusty gas and, more comprehensively, as an example of a 
relaxing gas (e.g. Rudinger 1969). We can also find the dispersive properties 
of separated stratified gas-liquid systems, in which each phase is continuous 
(Morioka & Matsui 1973), and plug systems, in which both phases are discrete 
(Matsui & Morioka 1974). 

In  this paper, we consider pressure-wave propagation through a simple sepa- 
rated gas-liquid layer at  rest in a duct of constant rectangular section and infinite 
length (see figure 1) .  It is shown that this system is dispersive, possessing multiple 
(infinitely many) modes which depend only on the ratios of the densities, thick- 
nesses and sound speeds of the two phases in spite of the two-dimensional eon- 
figuration (§  2). We consider the wave motion generated by suddenly removing 
a diaphragm dividing the duct into two chambers in which the pressures are 
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FIGURE 1. Sketch of pressure-wave propagation through a separated gas-liquid layer at rest 
in a duct of constant rectangular cross-section and infinite length. 

different. Since the dispersion relation is presentedin the form of a transcendental 
equation, it is difficult to express the solution explicitly, even if we restrict 
ourselves to infinitesimal waves. Here the formal solution uniformly valid within 
the linearized theory is presented by using the Laplace-Pourier transform 
technique (93). By integrating numerically such a formal solution, we can 
illustrate the characteristic variations in the pressure distribution along the duct 
wall and the shape of the interface, and also their dependence on the ratio of the 
densities of the two phases ($4). These numerical results show that the pressure 
field approaches a one-dimensional configuration moving at  a constant speed as 
time progresses. This tendency, as well as the behaviour of the phase velocity in 
the low frequency limit, suggests that the effect of weak nonlinearity may be taken 
into account by applying the reductive perturbation method (Gardner & 
Morikawa 1960; Taniuti & Wei 1968). In fact it is shown that the pressure field is 
described asymptotically by the Korteweg-de Vries equation ($  5).  

2. Dispersion relation 
The motion is assumed to be two-dimensional and the effects of gravity and 

viscosity are neglected. Then the equations describing the motion may be 
written, in non-dimensional form, as follows: 

@+-(pi(/2)+-(piq) a a = 0, 

at ax aY 

dP,IP, = yp* c; dpilpi. (1  4 
Here the suffix i must be replaced by g and 1 for the gaseous and liquid phases 
respectively. p+ is the ratio of the liquid density and the gas density and c* is the 
ratio of the sound speed in the liquid phase to  that in the gaseous phase; they 
must be replaced by unity in the equations describing the gaseous phase. The 
length and time scales are L and Lc-1, and the velocity components Ui and q, 
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pressure P, and density pi have been made non-dimensional using c, P and p+ p, 
respectively, where L is the duct height and c, P and p are the sound speed, 
pressure and density of the gaseous phase at  rest. y denotes the ratio of the 
specific heats of the gas. 

The boundary conditions for the fluid motion are derived from the require- 
ments that the fluid flows along the duct wall and the interface is a tangential 
discontinuity: 

V , = O  at y = h ,  q = O  a t  y=-(1-h) ,  

P, = 6, = a Y / a t + q a Y / a ~  at  y = Y(t,x), 

where h ( < 1) and - (1 - h) are the non-dimensional locations of the walls on the 
gaseous and liquid sides measured from the interface level in the rest state. The 
function Y(t,x) denotes the shape of the interface and satisfies the initial 
condition Y(0,x) = 0. 

= mi, pi = 1 +€pi, pi = 1 +€pi and Y = eY', where e < 1, 
and linearizing (1) and (2), we have 

I (2) 

Writing = mi, 

(4) 
v g =  0 at y =  h, v,= 0 at y =-(1-h), 

ps = p l ,  vY = V, = aY'/at at  y = 0. 

Here pi has been eliminated by using the relation pi = yp* c2,pi. 
Now we consider a simple harmonic disturbance of the form 

ui/ai(y) = vi/Oi(y) = pi/&(y) = ei(kz-wt). (5) 

Substituting these expressions into (3) and taking account of (4), we then find 
the dispersion relation 

htanh(hh)+p,lh, tanh((1-h)h,) = 0, (6) 

where h2 = k2 - w2 and h2, = k2 - w2/c:. Equation (6) is consistent with the relation 
which determines the poles of the integrand in the formal solution discussed in 
the following section. Unfortunately we cannot express the roots of this tran- 
scendental equation explicitly, and must infer properties from several asymptotic 
expressions and numerical solutions. 

We first obtain asymptotic expressions for large p+: 

k+p;lptanh{(l-h),&}/2h+ ... (n = 0) ,  

{ic" + (n7r/h)2)* + . . . .=( 
(n = 1,2, ...), 

where p2 = 1 - c;2 and n denotes the mode number. Then corresponding asymp- 
totic expressions for the phase velocity w / k  and group velocity awlah can be found. 
Thus a disturbance propagating through a separated gas-liquid system may 
consist of an infinite number of modes. Each phase velocity is larger than that 
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(a) ( b )  
FIGURE 2. Numerical solution of the dispersion relation: ( a )  p* = 1000 and (a) p* = 10 with 
c* = 4 and h = 0.1 (solid line) or 0.01 (broken line). Phase velocities of the first three modes 
(n = 0, 1 and 2) are plotted vs. k. 

in the gaseous phase alone and increases for lower wavenumbers and also higher 
mode numbers. The group velocity is smaller than the phase velocity for each 
mode and is smaller than that in the gaseous phase alone except for the zeroth 
mode. When p*, h and c ; ~  are comparatively small, the system exhibits strong 
dispersion in the sense that the phase and group velocities vary considerably 
with frequency. 

Another asymptotic expression can be obtained for the zeroth mode, for 
small k: 

,I?+... . (8) 
3P:k 

This form suggests that weak nonlinearity may be considered by applying the 
reductive perturbation method (Washimi & Taniuti 1966; Jeffrey & Kakutani 
1972). 

The numerical solution of the dispersion relation (6) is shown in figure 2 for 
several values of h and p+ and c8 = 4. Only the first three modes are shown. The 
iterative procedure, by Newton's method, easily converges starting from the 
value given by (7). The selected values of c* and p* correspond to an air-water 
system; p+ = 1000 corresponds to atmospheric conditions and p* = 10 to high- 
pressure conditions. The results confirm the previous discussion based on the 
asymptotic representation. 

I h + (1 - h)/p* -p2h2( 1 - h)Z (1  - h + h/p*) 
[h + 11- - W/P* c*l { h + (1 - W/P* G: 

0 2  = k2 
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3. Integral representation of the disturbance 
As the initial state we assume a step pressure profile: 

We use Laplace transforms with respect to t and Fourier transforms with 
pi =-&sgnx, ui =vi = 0 a t  t = O .  (9) 

respect to x, e.g. 

and take account of (9). Then, (3) and (4) are reduced to simultaneous ordinary 
differential equations with respect to y: 

yp* svi = -d&/dy, ( j o b )  

(11) 
- 
v g =  0 at y = h ,  El = 0 at y = - ( 1 - h ) ,  

p g  = pl,  Vg = C, = sY‘ at y = 0. 

Here the suffix i must be again replaced by g and 1 for the gaseous and liquid 
phases, respectively, and ps and c* must be replaced by unity in the equations 
for the gaseous phase. In  deriving (loa), we have eliminated ui by using the 
relation yp* = - ikpi. 

The boundary-value problem presented by (10) and (1  1) leads to the following 
solution : 

- - 

(12) 

(13) 

s (s / ik)  ( c ; ~ A ; ~  - A-2) cosh { (h  - y) A} 
pg = -=2-1 +p,Atanh(hA)/A, tanh((1 -h)A,} cosh(hh) ’ 

ikc2, A2, -I- 1 +p;lA, tanh {( 1 - h) &}/A tanh (hA) cosh {( 1 - h) A,} 
S ( s / i k )  ( c G ~ A , ~  - A-’) cosh((1 -h+y)h*}  j j l  = -- ’ 

tanh (hh), (14) 
- (hlyik)  ( C , ~ A , ’  - A-2) 
v i l ~ = o  - 1 +p+ A tanh (hh)/h, tanh((1 -h)A,} 

where A2 = k2 + s2 and h2, = k2 + s2/ci. The pressure field can then be expressed as 

(15) =-j  eikx { Res [l)iest]s=iwJ dk = p y ) ,  

according to the inversion formula. Here Res [piest]s,iwn denotes the residue a t  
the pole s = iw ,  in the integrand jjiest, where w, is a real function of k provided 
by the dispersion relation (6). Thus pin) represents the contribution from the 
nth mode. Calculating the residues by using (12) and (13), we have 

l W  

2n - -m n=O n=O 
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where v2 = -A2. For the higher modes (n > l),  h2, becomes negative for small k 
and then the real expression can be obtained by setting A2, = - v", 

On the other hand, the shape of the interface between the gaseous and the 
liquid phases can be expressed as 

Here Y(n) denotes the contribution from the nth mode. After calculating the 
residues by using (14), we have 

tanh (hk) sin (xk) dk 
= 

1 +p+ tanh (hk)/tanh ((1 - h) k} J62' 

y ( n )  = - - (~2+~2,h2,)vtan(hv)sin(xk)cos( tw,)  clk 
n 0 v2{1 +2(1 -h)h,/sinh [2(1 -h)h,]}+c2,h2,{1+2hv/sin (2hv) )  yw:k' 

(20) 
"Srn 

4. Numerical results 
The integral expressions for the pressure field, (15)-(17), and the interface, 

(18)-(20), can be evaluated numerically using a computer. The calculation was 
performed for p+ = 1000 and 10 with c9 = 4 and h = 0.1. These values of p+ and 
cB correspond to an air-water system and the two values of p+ may be expected 
under atmospheric and high-pressure conditions, respectively. The pressure 
distributions along the upper and lower walls of the duct and the shape of the 
interface were represented at  several time intervals after the motion had started. 
The calculation was based on numerical quadrature of the Fourier integrals by 
the ordinary trapezoidal rule, including the iterative solution of the transcen- 
dental dispersionequation. The quadrature points were at  equalintervals k = 0.01. 
This rule is adequate for the moderate values of x and t considered here, but 
Filon's (1928) formula taking into account the sinusoidal behaviour of the 
integrand may be used for larger values of x and t .  For the pressure distribution 
along the lower (liquid side) wall, only the contribution from k = 0-20 was 
considered, since the integrand includes an effectively operating exponential 
term. On the other hand, for the upper (gaseous side) wall, the integrand executes 
a slow algebraically damped oscillation, and more quadrature points were 
required for convergence. Thus the contribution from k = 0-50 was considered. 
In  the calculation of the interface shape, we took into account the contribution 
from k = 0-50. To examine the convergence of the results a check was carried 
out by comparing with the result for half the interval of integration. In either 
case the first three modes were taken into account, though the higher modes 
considered here contribute little. 

Figure 3 (a)  shows the pressure distributions along the upper and lower walls 
a t  the non-dimensional times t = 0 ,5 ,10  and 15 for the case p+ = 1000, cB = 4 and 
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FIGURE 3. Pressure distribution along the duct wall at t = 0, 5, 10 and 15 for (a)  p* = 1000 
and ( b )  p* = 10 with c* = 4 and h = 0.1. -, upper (gaseous side) wall; ---, lower (liquid 
side) wall, 

h = 0.1. The pressure distribution along the upper wall is almost a step profile 
moving with the sound speed of the gaseous phase, but a growing deviation may 
be observed in the neighbourhood of the corners. The pressure distribution along 
the lower wall exhibits a similar step profile but the corners are appreciably 
smoothed. The pressure profile on the lower wall does not exhibit the correct 
initial shape. This seems to be due to the neglect of the higher modes, which play 
an impoitant role in the initial stage, especially in the liquid phase. 

The initial pressure field can be described conveniently by making use of the 
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FIGURE 4. Shape of interface at t = 0 , 5 ,  10 and 15, for (a )  p* = 1000 and 
( b )  p* = 10 with c* = 4 and 7k = 0.1. 

wave expansion technique, as used by Cagniard (1939) in association with seismic 
waves. Since the neighbourhood of the starting point (€ = 0, x = 0) corresponds 
to  large values of s and k, the right-hand side of (13) with y = - (1  - h)  may be 
expanded in powers of exp [ - (I  - h)  A,] and exp ( - hh) : 

+fz(s ,  k) exp [ - 2hA- (1  --h)A+] +f&, k) exp [ - 3(1 -h)A,] + .. ., ( 2 1 )  

where fl, fi and f3 are algebraic functions of s and k. Inversion of the first term 

( 2 2 )  
clearly gives 

- isgn (x+c,  t )  - isgn (x- cy, t ) ,  

while the subsequent terms contribute only for t > (1 - h)/c,, 2h - (1 - h)/c, ,  
3( 1 - h)/c, and so on and denote the direct and successively reflected effects of 
the interface interaction. Although the explicit representation of their inversions 
is difficult, it is clear that the pressure distribution on the lower wall is given by 
( 2 2 )  for t < (1 -h)/c ,  and satisfies the prescribed initial condition. Thus, our 
numerical calculation may be effective for t 

Figure 3 ( b )  shows the pressure distributions along the upper and lower walls 
of the duct for the case p+ = 10, c* = 4 and h = 0.1. An obvious wavy pattern 
appears in front of the near step profile moving with the sound speed of the 
gaseous phase. The pressure on the gaseous side abruptly fluctuates at  the front, 
progressing with the sound speed of the gaseous phase. This change tends to 
induce an upstream wave and corresponding motion in the liquid phase. This is 
conspicuous at the initial stage but in the course of time approach to a one- 
dimensional configuration may be observed. 

Figures 4 (a) and ( b )  show the shape of the interface a t  t = 0, 5 ,  10 and 15 for 
p8 = 1000 and 10, respectively. We can see a rise in the liquid phase in the com- 
pression region. This phenomenon, as well as its order of magnitude, will be 
rederived by the reductive perturbation procedure developed in the following 
section [see ( 3 2 ) ] .  

(1 - h)/c,. 
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5. Effect of weak nonlinearity 
The numerical results in the preceding section show that the pressure field 

approaches a one-dimensional configuration moving with constant speed as time 
progresses. In addition, the asymptotic expression for the phase velocity for 
small k [§ 2, equation (3)] suggests that if we balance the weak nonlinearity and 
dispersion by applying the reductive perturbation method, the original system of 
equations may be described asymptotically by the Korteweg-de Vries equation. 
In this section we show that it is in fact so. 

Now we return to the original nonlinear equations (1) and (2). We take the 
stretched co-ordinates 

7 = EQ, g = s ~ ( z / V - t ) ,  y = y (23) 

and expand the perturbations in ascending powers of E :  

Here V corresponds to the non-dimensional asymptotic phase velocity, which 
will be determined by the consistency relation for the system. 

Substituting (23) and (24) into ( l ) ,  and writing down the equations arising 
from the terms of lowest and second lowest order in e, we obtain 

d P p  - yp* c; app = p y  d P p  - yp* c; pp d p p ,  (26 4 
where the suffix i must be replaced by g and 1 for the gaseous and liquid phases, 
respectively, and p* and c* by unity in the equations for the gaseous phase. 

The boundary conditions can be obtained by substituting (23), (24) and 

Y ( 7 ) t )  = eY(l)+e2Y(2)+ ... 
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into ( 2 )  a d  collecting the terms of lowest and second lowest order in E :  

8. Morioka and G .  Matsui 

vL?= 0 a t  y = h, vr) = O at y = - ( I - h ) ,  

P($ == (1) v( 1) = ~ ( 1 )  = - a Y(l)/ag at = 0, 
P 1 , g  1 

v g ) = O  a t  y = h ,  vy) = O  a t  y = -(I-/$), 

p g )  = p y ) ,  v?) + ~-1uF) vh1) = vi2) + V-IuiU vf) a t  y = 0. 

In  deriving the conditions for y = 0,  we have used the expansion 

q(7, <, Y )  = UiI,=, + Y[aUi/aylu=,, + . . . etc. 

The solution to ( 2 5 )  satisfying ( 2 7 a )  is found to be 
y J T u y  = yp;l' = P g  (1) ( 7 7 < ) >  

Thus the leading term in each expansion, except for the y component of the 
velocity, is independent of y. Explicitly, the a,symptotic phase velocity V agrees 
with the leading term of ( 8 ) .  From the last relation of (27 b) ,  we have 

The int'erface rises a distance of' order p2h( 1 - h)/(  1 - h +p+ h)  in the compressed 
region. The quantity p ( l ) ( ~ ,  <) is determined by the requirement that the 
boundary-value problem a t  the next order constitutes a consistent system. 

When we substitute (29) - (31)  into the right-hand sides of (26)) they can be 
expressed in terms of p ( l ) ( ~ ,  5) only. Integrating these equations and applying the 



By using (33) and (34) in ( 2 8 6 )  we obtain the following consistency relations: 

Fg(7,t-) = 40-2 8, (35) 

where p2  = 1 - c ; ~ .  Apparently (36) shows that @(7,5) is the solution of the 
Korteweg-de Vries equation. The coefficient of the nonlinear term is always of 
order unity. On the other hand, the dispersion parameter (the coefficient of 
a3p(l)/8t3) is small for atmospheric conditions and a moderate value of h, but it 
may become large with decreasing p+ and h, that is, for high-pressure conditions 
and a thin gaseous layer. 

At present we can get a lot of information about the properties of the solution 
to the Korteweg-de Vries equation (e.g. Leibovich & Seebass 1974), and the 
above results suggest that observation of solitons is possible also for a pressure 
wave through a simple separated gas-liquid system. 
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